skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Xuanyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bilingualism research has long been challenged by a lack of a unified approach to quantifying language dominance and degree of multilingualism. While numerous questionnaires (e.g., LHQ, BLP, LEAP‑Q, and LUQ) provide valuable data on language background variables, they lack a standardized formula to compute key measures from it. We introduce two formulas that synthesize critical linguistic variables to efficiently calculate language dominance and a multilingualism score that ranges from perfect monolingualism to native-like proficiency in multiple languages. Validation across two large datasets shows our dominance measure closely aligns with more complex PCA methods while being simpler and more efficient. 
    more » « less
    Free, publicly-accessible full text available December 29, 2026
  2. The nucleocytoplasmic exchange is of fundamental importance to eukaryotic life and is mediated by karyo- pherins, a superfamily of nuclear transport receptors. However, the function and cargo spectrum of plant kar- yopherins are largely obscure. Here, we report proximity-labeling-based proteomic profiling of in vivo sub- strates of KA120, a karyopherin-b required for suppressing autoimmune induction in Arabidopsis. We identify multiple components of the MOS4-associated complex (MAC), a conserved splicing regulatory pro- tein complex. Surprisingly, we find that KA120 does not affect the nucleocytoplasmic distribution of MAC proteins but rather prevents their protein condensation in the nucleus. Furthermore, we demonstrate that MAC condensation is robustly induced by pathogen infection, which is sufficient to activate defense gene expression, possibly by sequestrating negative immune regulators via phase transition. Our study reveals a noncanonical chaperoning activity of a plant karyopherin, which modulates the nuclear condensation of an evolutionarily conserved splicing regulatory complex to coordinate plant immune activation. 
    more » « less